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In this paper, a noise robust method of measuring target distance through chaotic synchronization is proposed. In the 
method, a reference sinusoidal signal is superimposed to the radar transmitted signal generated by the master chaotic 
system, and the radar received signal forces the slave chaotic system to generate the chaotic signal embedded in it, which 
can recover the sinusoidal signal by chaotic synchronization. The phase error of the reference sinusoidal signal and the 
recovered sinusoidal signal allows computation of the flight time of the transmitted signal. Thus, the distance of the radar 
from the target can be obtained. Unlike the existing methods, the proposed method is more robust to noise. The noise 
robust feature make the proposed method has more application potential than that of the existing methods. Finally, the 
proposed method is illustrated by numerical simulations to show its effectiveness on target distance measurement. 
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1. Introduction 
 
Chaos synchronization which was first introduced by 

Pecora and Carroll [1], has attracted much attention in 
recent years, especially its applications to electronics [2], 
optical communication [3-6], and radar [7-16].  

The target distance measurement is an important 
content of chaotic radar. It has been investigated by lots of 
researchers and a variety of methods have been proposed 
for target distance measurement. In[8], the transmitted 
signals are reconstructed through chaotic initial condition 
estimation methods. The target distance is obtained by 
computing the correlation function of the reconstructed 
transmitted signal and the received signal. This method is 
simple for operation. However, in practice, especially 
when added noise, initial condition estimation is not 
always accurate, and a small initial condition estimation 
error can cause large reconstruction error of transmitted 
signal. This limits the application of the method in 
practical engineering. In [9], a novel method of target 
distance measurement based on synchronization of Chua’s 
chaotic system is proposed. The distance measurement is 
realized by comparing the phase of the transmitted signal 
with the received signal after synchronization. This 
method is easy to implement and the distance 
measurement is accurate in ideal condition. However, like 
the method in [8], the method in [9] is also sensitive to 
noise. Since in practical engineering, noise can not be 
avoided, thus the noise robust method is necessary needed.  

In this paper, a noise robust method for measuring 
target distance is proposed. In the proposed method, firstly, 
a reference sinusoidal signal is superimposed to the radar 
transmitted signal. Then, let the radar received signal force 
the slave chaotic system to generate the same chaotic 

signal. In this way, the sinusoidal signal can be recovered 
by chaotic synchronization. The difference of the phases 
of the two sinusoidal signals allows computation of the 
flight time of the signal from radar to the target, and thus 
the target distance can be obtained.  

Unlike the method in [8,9], the proposed method in 
this paper is more robust to noise by exploring the 
characters of a two-frequency system[14]. We find there 
are three advantages when use the two-frequency system 
in chaotic radar. The main one is: the slow part of 
two-frequency system is designed as a noise filter which 
makes the whole system robust to noise. This can 
overcome the noise sensitivity of the traditional chaotic 
system (such as Chua’s) when doing synchronization. 
Even the signal-to-noise ratios (SNR) is low, the 
performance of chaotic synchronization is also well. The 
reason for this is illustrated in detail in section 3. The 
second one is: the high frequency signal make the radar 
transmitted signal have wide bandwidth and high distance 
resolution, which is suitable for high precision distance 
measurement. The third is: the low frequency signal can be 
extracted after synchronization in the receiving part. The 
narrowband signal is suitable for obtaining the Doppler 
shift of moving target and the Doppler shift error is always 
smaller than that when using wideband signal.  

This paper is organized as follows. In section 2, the 
two-frequency chaotic system is introduced. In section 3, 
the analysis of noise robust feature of the two-frequency 
system is performed. In section 4, the noise robust target 
distance measurement method is proposed based on 
synchronization of the two-frequency chaotic system. In 
section 5, numerical simulation is done to verify 
effectiveness of the theory. Brief conclusion of this paper 
is drawn in section 6. 
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2. Two-frequency chaotic system 
 
The two-frequency chaotic system is proposed by 

Carroll [14]. It is described as 
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where 1 2 3 4 50.02, 0.13, 0.01, 0.1, 0.5,c c c c c= = = = =  
6 0.1c = . Eq.(1) contains a high frequency part and a low 

frequency part. Its fast attractor and low attractor part is 
shown in Fig. 1 and Fig.2 respectively. The 1 3x x�  
equation describes a fast chaotic system which is the high 
frequency part. The 4 6x x�  is a damped system 
coupled to the high frequency part. The waveform of 

1 2,x x  and 4 5,x x is shown in Fig. 3 and Fig.4. The 
frequency band of the damped system is determined by 
the time constant 3c , which is between 0 and 1. For 
example, 3 0.01c =  means the frequency of the 4 6x x�  
system is one-hundredth of that of the 1 3x x�  system. 
The synchronization of the two-frequency chaotic system 
is robust to added noise, which will be offered in section 
3.  
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Fig. 1. 1 2,x x  attractor of fast part For Eq.(1). 
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Fig. 2. 4 5,x x attractor of slow part for Eq.(1) 
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Fig. 3. 1 2,x x waveform of fast part for Eq.(1). 
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Fig. 4. 4 5,x x waveform of slow part for Eq.(1). 

 
3. Analysis of noise robust system 
 
In this section the mechanism for noise robust of the 

system 2 is explored. 
Seen from section 2, the chaotic system is consists 

of a fast part (Rossler chaotic system) coupled to a slow 
part. It has been shown that increasing the time scale 
separation between fast and slow parts increases the 
ability of these systems to resist added noise[13]. Herein, 
we will offer the reason for its noise robust. 

Notice that the slave system of Eq.(1) in Ref. 14 is 
described by: 
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The parameters in Eq. (2) are chosen to match the 
parameters in Eq. (1). The term ( )n t  in Eq. (2) is an 
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additive white noise term. Here, Eq.(2) can be rewritten 
as: 
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where 3c tτ =  represents the slow time scale. When 

3 0c → , the fast time part 1 3y y� could be rewritten as 
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Substituting the solution of Eq.(4) into the slow 
equations ( 4 6y y� part in Eq.(3)) yields  
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The Jacobian matrix for the slow system defined by 
Eq.(5) is  
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In this way, the values of the fast variables 1 3y y�  do 
not appear in the Jacobian of the slow system. That 
means the slow part does not affect by the additive noise 
(noise is added in fast part 2x  term) .  

In fact, the slow part of the system acts like a 
narrow band filter. Thus, it has the feature of noise 
filtering. When the slow time scale 3c  is small, the 
bandwidth of the low frequency is so small, it will not be 

strongly affected by the additive noise. If 3 0c → , the 
system will not be affected by noise in theory when 
synchronize the slave system defined by Eq.(2) to the 
master system defined by Eq.(1).  

In all, the slow part acting like the noise filter makes 
the two-frequency system have the noise resistant feature 
when doing synchronization. 

 
 
4. Noise robust method for target distance  
   measurement  

 
In this section a noise robust method for target 

distance measurement is proposed after developing the 
two-frequency chaotic system. Firstly, a reference 
sinusoidal signal is superimposed to the radar transmitted 
signal which is generated by the two-frequency. Then, let 
the radar received signal be the master signal which 
forces the slave chaotic system to generate the chaotic 
signal embedded in it. The sinusoidal signal is then 
recovered by chaotic synchronization even under strong 
noise condition. Next, compute the phase error of the two 
sinusoidal signals and get the flight time of the signal. 
Finally, the distance of the radar from the target can be 
obtained from the flight time. The main idea of the 
proposed method can be illustrated by Fig.5. 
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Fig. 5. The schematic of the proposed method for target 

distance measurement 
 
In the proposed method, the radar transmitted signal 

( )ts t is described as 

2 1 0( ) ( ) sin( )t ms t x t tω θ= + +           (7) 

where 1 0sin( )tω θ+  is an embedded reference signal. 

1ω  is a constant and defined as the angular frequency, 
and 0θ  is defined as the initial phase. 2 ( )mx t  is 
generated by the two-frequency chaotic system which is 
defined as 
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The echo signal ( )rs t  which is reflected from the 
target is  

2 2 1( ) ( ) sin[ ( ) ] ( )r ms t x t t n tτ ω τ θ= − + − + +    (9) 

where τ  represents the time taken by the transmitted 
signal to return to the receiver from the target. 2ω is the 
angular frequency, which is different to 1ω due to the 
target Doppler shift. 1θ  represents the initial phase. 

( )n t is the added white Gauss noise.  
Let ( )rs t  be the master signal. The slave system 

which is defined by Eq.(10) , is driven by ( )rs t . 
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In the ideal condition (no noise condition), the 
output of 2 ( )sx t τ−  in Eq.(10) should be the same as 
that of 2 ( )mx t τ−  in Eq.(8) when the two system tent to 
synchronize. In this case, ( )rs t subtracts the signal 

2 ( )sx t τ− should only have one term 2 1sin[ ( ) ]tω τ θ− + . 
However, in practice, noise is anywhere. Then have  

2 2 1( ) ( ) sin[ ( ) ]r s es t x t tτ ω τ θ ε− − = − + +    (11) 

where eε is the synchronization error due to noise.  
Herein, the chaotic synchronization performances of 

the proposed method and that of the method in [9] are 
shown in Fig. 6-Fig. 8. In Fig. 6, it is shows that when 
the noise is weak (SNR=40dB), the transmitted signal 
and the signal after synchronization are nearly along a 
diagonal, which means the two signals are almost same. 
When the noise becomes strong (SNR=20dB, in Fig. 7), 
the performance of the proposed method is not much 
affected by the noise, while the performance of the 
method in [9] is strongly affected by the noise. The two 
signals tend to diverge from the diagonal in Fig. 7(b). 
When SNR=0dB, the method in [9] nearly can not make 
the slave system synchronize to the master system, while 
in the proposed method the transmitted signal and the 
signal after synchronization is still along a diagonal, 
which means the synchronization error is still small. This 

indicates that the proposed method performs better than 
the method in [9] under noise condition. 
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Fig. 6. Synchronization performances under SNR=40dB 
(a) the performance of the proposed method  

(b) the performance of the method in [9] 
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Fig. 7. Synchronization performances under 
SNR=20dB(a) the performance of the proposed method              

(b) the performance of the method in [9]. 
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Fig. 8. Synchronization performances under SNR=0dB 
(a) the performance of the proposed method 
 (b) the performance of the method in [9].  

 

Besides the noise robust feature, the proposed 
method has another two advantages. One is the high 
frequency signal of the two-frequency system makes the 
radar transmitted signal have wide bandwidth and high 
distance resolution, which is suitable for high precision 
distance measurement. The other is the low frequency 
signal can be extracted after synchronization in the 
receiving part, which is suitable for getting the Doppler 
shift of moving target. The Doppler shift error is always 
smaller than that when using wideband signal. These two 
advantages can be illustrated by Fig. 9. This paper is 
focuses on target distance measurement. The velocity 
measurement will be studied latter. 

  
Fast frequency  part 

xm1,xm2,xm3

Slow frequency 
part  xm4,xm5,xm6

Transmit  fast 
frequency signal xm2

Slave system

( ) ( ) ( )r ts t s t n t= +

Fast frequency part 
xs1,xs2,xs3

Slow frequency 
part  xs4,xs5,xs6

Distance measurement by 
wideband signal

Velocity measurement by 
narrowband signal

( )ts t

Receiving system

Transmitting system

Master system

Force
after synchronizaiton 

 
 

Fig. 9. The chaotic radar schematic for distance and 
velocity measurement.  

 
Next, the way to obtain the target distance is given 

by computing the phase error of the reference sinusoidal 

signal and the recovered sinusoidal signal in noise 
condition.  

Let the recovered sinusoidal signal ( )m t  as 

2 1( ) sin[ ( ) ] em t tω τ θ ε= − + +         (12) 

In order to obtain the phase error of recovered signal 
( )m t  and the reference signal 1 0sin( )tω θ+ , herein，a 

new way is given by using Hilbert transform. Unlike the 
method in [9] which gets the phase error of the two 
signals by comparing them directly in time domain, in 
the proposed method Hilbert transform of ( )m t  is 
computed, and the phase error is obtained based on the 
analytic signal of ( )m t . The reason in doing so is that 
under noise condition the exact phase error may not be 
got directly. In order to overcome this, a method of 
getting the phase error of the two signal by Hilbert 
transform is offered. It is shown as follows. 

Firstly, compute the analytic signal ( )tψ : 

( ) ( ) ( ) ( ) ( )j tt m t jm t A t e θψ ′= + =        (13) 

where ( )A t  is the amplitude of ( )tψ , ( )m t′ is the 
Hilbert transform of ( )m t , which is defined by: 
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where P V� � represents the integration of Cauchy 
principle value. 

Then, the phase of the recovered signal is  
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Thus, the time taken by the transmitted signal to 
return to the receiver from the target is  
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Finally, the target distance 0r  can be obtained by 

0 2
cr τ

=                  (17) 

where c  is the light velocity.  

 
5. Numerical simulation 
 
In this section, numerical simulation is given to 

verify the effectiveness of the proposed method.  
Let the angular frequency 1 10kHzω = and the 

target is 1500m far from the radar under SNR=0dB. The 
signal bandwidth is 100MHz. The transmitted signal is 

( )ts t  described by Eq.(7) and Eq.(8), where 

1 2 3 4 5 60.02, 0.13, 0.01, 0.1, 0.5, 0.1c c c c c c= = = = = = in 
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Eq.(8). Fig. 10 shows the waveform of transmitted signal 
( )ts t . ( )ts t  under SNR=0dB is shown in Fig. 11. It is 

seen clearly in Fig. 11 that ( )ts t  is covered by added 
noise. Then using the chaotic synchronization method 
described in section 4 in this paper to recover the signal 
under noise condition. The recovered receiving signal 

( )rs t  through chaotic synchronization is shown in 
Fig.12. For comparing, the method in [8,16] is also used 
for recovering ( )rs t .They are shown in Fig. 13 - Fig. 14. 
Seen from Fig. 12 - Fig. 14, the performance of the 
recovered signal is better than that of the method in 
[8,16]. This means the proposed method has noise robust 
feature.  

Next, the phases of the recovered sinusoidal signal 
and the reference sinusoidal signal are obtained using 
Eq.(13)-Eq.(15). The result is shown in Fig. 15. The 
enlarged figure of Fig. 15 is shown in Fig. 16. Seen from 
Fig. 15 and Fig. 16, the phase error of the reference 
sinusoidal signal and the recovered sinusoidal signal is 
0.1rad. Thus the time taken by the transmitted signal to 
return to the receiver from the target is 510− second by 
Eq.(16). Then, the target distance 1500m is got by 
Eq.(17). 
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Fig. 10. Transmitted signal ( )ts t . 
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Fig. 11. Transmitted signal ( )ts t  under SNR=0. 
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Fig. 12. ( )ts t  and the recovered signal through chaotic 
synchronization method in this paper. 
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Fig. 13. ( )ts t and the recovered signal by using  
the method in [8]. 
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Fig. 14. ( )ts t and the recovered signal by using  
the method in [16]. 
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Fig. 15. The phases of the reference signal and  

the recovered signal. 
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Fig. 16. The enlarged figure of Fig. 15. 

 
Though the method in [8,9,16] can also get the 

target distance in no noise condition, while the proposed 
method is more suitable under noise condition. In [8,16], 
the SNR threshold should is about 40dB. When SNR is 
below 40dB, the target distance can not be obtained 
exactly. In [9] the SNR threshold is about 30dB. In this 
paper, the target distance can still be measured when the 
SNR=0dB or below. This make the proposed method has 
more potential in practical engineering. 

 
6. Conclusions 

 
This paper describes the theoretic aspect of a noise 

robust method of distance measurement based on chaotic 
synchronization. The noise robust feature of the 
two-frequency chaotic system is analyzed. That the fact it 
is the slow part acting like the noise filter makes the 
two-frequency system have the noise resistant feature. 
The noise robust feature of the chaotic system allows the 
recovery of the reference sinusoidal signal through 
chaotic synchronization. The target distance still can be 
accurately obtained by computing the phase error of the 
two signals when SNR=0dB. The noise robust feature 
makes the proposed method has potential application in 
practical engineering.  
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